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one distorted geometry to another must be very small) and 
(b) the lowest singlet must lie below the triplet. With regard 
to the first condition, it should be noted that the lowest sin­
glet state of square cyclobutadiene ('Big) is nondegener-
ate2,7a,d a n j s o j s n o t subject to the consequences of the 
Jahn-Teller theorem.8 Although there is a low-lying singlet 
("Aig) that can be mixed with 'Bi g by a vibration that con­
verts square to rectangular cyclobutadiene,2 there is no 
guarantee that this pseudo-Jahn-Teller effect9 will, in fact, 
produce any appreciable energy lowering. The reason is 
that although the distortion does lead to an increase in 
bonding, it is also accompanied by an increase in electron 
repulsion. Only in the square geometry of cyclobutadiene 
(and, more generally, in the most symmetrical geometry of 
other [4n]annulenes)7a are the two electrons in the non-
bonding MO's confined to different sets of atoms, so that 
the wave function for these electrons contains no ionic 
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terms.7b,d In fact, Snyder has carried out model calculations 
which show that a rectangular distortion, which causes a 
decrease in energy of 11.5 kcal/mol for the lowest singlet in 
a Huckel treatment, results in only a 0.5 kcal/mol energy 
drop when electron repulsion is included.10,1' 

If, because bonding cannot be maximized while electron 
repulsion is simultaneously minimized in the lowest singlet, 
the potential curve for distortion in this state of cyclobuta-
diene is very flat, then the pseudo-Jahn-Teller effect cannot 
be responsible for dropping the energy of this state below 
that of the triplet. When overlap is neglected, the fact that 
the nonbonding electrons can be confined to different sets of 
atoms makes the lowest singlet accidentally degenerate with 
the triplet in square cyclobutadiene.7a,d'n However, when 
the zero differential overlap approximation12 is not made, 
scaling the appropriate semiempirical repulsion integrals by 
the square of the overlap integral allows an estimate of 3 
kcal/mol as the amount by which the triplet lies below the 
singlet in the square geometry.13 Therefore, if condition (a) 
is fulfilled, condition (b) can be satisfied only if there exists 
another effect that drops the energy of the singlet below 
that of the triplet in the square geometry of cyclobutadiene. 

That such an effect does exist is indicated by the ab initio 
calculation on cyclobutadiene carried out by Buenker and 
Peyerimhoff.14 They found that when configuration inter­
action (CI) is included, the singlet lies below the triplet at 
all geometries.'5 Although these authors carried out exten­
sive (70 X 70) CI, the same result is obtained when just the 
lowest excited 'Big and 3A2g configurations are mixed into 
the lowest singlet and triplet wave functions. Using a stan­
dard set of semiempirical parameters,7d this mixing is found 
to stabilize the square singlet by 8 kcal/mol more than it 
does the triplet, which is sufficient to make the former the 
ground state at all geometries. 

The physical reason for the stabilization of the singlet 
relative to the triplet by CI is related to the effect on the 
allyl radical16 of mixing into \\p\aip\^ip20') the lowest excited 
doublet of the same symmetry 

* = 7^2 MWl0W) " |*l"Wfy2°> " 2|^,^^3a» (1) 
V O 

The first term in (1), by mixing 1̂3 into \p\ with a plus sign, 
increases the probability of finding the a spin electron in \p\ 
on the terminal carbon atoms. Since this electron has the 
same spin as that in \p2, these two electrons cannot simulta­
neously appear in the same p orbital. Increasing the proba­
bility of finding the former electron on the terminal atoms, 
to which the latter is confined, decreases the electrostatic 
repulsion between these two electrons by increasing the 
probability that they will be found at opposite ends of the 
molecule rather than on adjacent atoms. The second term in 
(1) increases the probability of finding the /3 spin electron in 
\p\ at the central carbon atom. Since this electron is not pro­
hibited from appearing simultaneously in the same p orbital 
as the a spin electron in vh, decreasing the probability of 
finding the former at the terminal carbon atoms, where the 
latter is confined, lowers the one-center repulsion between 
these two electrons. Together, the first two terms in (1) give 
rise to the negative spin density observed in the allyl radi­
cal.16 The third term, which differs from the lowest config­
uration in the orbital assignment of two electrons, decreases 
the electron repulsion between the electron in \p2 and the 
one of opposite spin in \p\ by correlating their motions so 
that they tend to be at different ends of the molecule. 

The lowest singlet and triplet in square cyclobutadiene 
both place one electron in each of the two nonbonding orbit-
als, when 1̂2 and 1̂3 are chosen so that they have no atoms 
in common. In the ws = 1 component of the triplet the elec­

trons in these MO's both have a spin, and the lowest excited 
triplet that can mix with \\l/\a\l/\li\p2a4>3c') is 

^ = V2 ^ ^ ^ f ) -\hat20+4a4*3a)) (2) 

It can be seen that, like the third term in (1), each term in 
(2) decreases electron repulsion by correlating the motion 
of the /3 spin electron in \f/\ with that of one of the nonbond­
ing electrons. There are no terms in (2) that correspond to 
the first two in (1), since, unlike the allyl radical, triplet cy­
clobutadiene has a uniform distribution of unpaired spin at 
each atom. 

The lowest excited singlet that can mix with 1Bi8 is 

* = ̂ ( 2 | ^ 3 ^ i ^ 2 a ^ > - ^ " M ^ a * 3 ) + 

\^ah0^2ahp) - I f I M 3 ^ ) -
I ^ ^ A l + l W i W ) " ) ) (3) 

In contrast to (2), (3) contains both types of terms present 
in (1). The reason is that the lowest 'Big configuration, 

* = -J= (\^h^2a^) -\hah8^2^3a» (4) 

behaves as if it had a nonuniform distribution of spin (i.e., 
a spin at the two atoms spanned by \p2 and /3 spin at those 
spanned by ̂ 3) . Although there is, of course, no net spin 
density at any of the atoms in the 'Big state of cyclobuta­
diene, the wave function in (4) does manifest antisymmetry 
with respect to spin in that, unlike any of the components of 
the triplet, (4) changes sign on interchange of the spins in 
\p2 and 1̂ 3. This fact allows (4) to profit by CI from a type 
of reduction, unavailable to the triplet, in the repulsion be­
tween the electrons in the nonbonding MO's and those in 
\p\. Mathematically, this situation is a consequence of the 
fact that the terms in (3) that are absent from the corre­
sponding expression for the lowest excited 3A2 configura­
tion with ws = O17 mix with the first term in (4) via an inte­
gral H and with the second via an integral — H. In the ms = 
0 component of the lowest 3A2 configuration, the minus in 
(4) is replaced by a plus; consequently, these two integrals 
sum to zero, hence the absence of the terms that give rise to 
them from the excited state that is mixed by CI into the ms 
= 0 component of 3A2. 

In summary, unlike the three components of the lowest 
3A2 configuration of cyclobutadiene, the lowest 'B| g con­
figuration has a wave function that is antisymmetric to spin 
interchange between \p2 and 1̂ 3. Consequently, the singlet 
behaves in CI as if it had a nonuniform distribution of spin; 
and, like the allyl radical, the singlet can thus profit from a 
decrease in electron repulsion of a type that is unavailable 
to the triplet. It is this fact that makes the singlet the 
ground state of cyclobutadiene, even in a square geome­
try.18 
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An alternative to this mechanism was suggested by Mac-
Kay et al.7a who proposed that carbon atom insertion into a 
C-H bond followed by rapid decomposition of the insertion 
complex produces a vinyl radical, which in turn can ab­
stract a hydrogen from the substrate to give ethylene-11C 
MacKay et al.7b subsequently suggested that pentene-7-11C 
resulted from methyne-11C reaction in ethylene. The use of 
ethylene as a substrate, however, precludes the intermedia-
cy of either the vinyl radical or of methyne in forming eth­
y lene-"C Thus it is not directly relevant to the results re­
ported in this paper. 

Double label techniques will be described which have 
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